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Introduction.-In a stochastic game the play proceeds by steps from
position to position, according to transition probabilities controlled jointly
by the two players. We shall assume a finite number, N, of positions,
and finite numbers Mk, nk of choices at each position; nevertheless, the
game may not be bounded in length. If, when at position k, the players
choose their ith and jth alternatives, respectively, then with probability
sAj > 0 the game stops, while with probability ph! the game moves to
position 1. Define

s = min s.
k, i,j

Since s is positive, the game ends with probability 1 after a finite number
of steps, because, for any number t, the probability that it has not stopped
after t steps is not more than (1 - s)t.
Payments accumulate throughout the course of play: the first player

takes as j from the second whenever the pair i, j is chosen at position k.
If we define the bound M:

M.= max la-JI,
k,i,j

then we see that the expected total gain or loss is bounded by

M + (1-s)M + (1-s)2M + . . . = M/s. (1)

The process therefore depends on N2 + N matrices

Pk- (ptji = 1, 2, ...,*; j = 1, 2, ...,nk)
At - (asjAi = 1, 2, ...,mk; j = 1, 2, ...,nk),

with k, I = 1, 2, ..., N, with elements satisfying
N

pki>02 aI l < M, E PSJ = 1 - St. < 1 - S < 1.
I=1

By specifying a starting position we obtain a particular game rP. The
term "stochastic game" will refer to the collection r = { kI| k = 1, 2, ....
NJ.
The full sets of pure and mixed strategies in these games are rather

cumbersome, since they take account of much information that turns out
to be irrelevant. However, we shall have to introduce a notation only
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for certain behavior strategies,1 namely those which prescribe for a player
the same probabilities for his choices every time the same position is
reached, by whatever route. Such stationary strategies, as we shall call
them, can be represented by N-tuples of probability distributions, thus:

x = (x, x2, x) each xk = (, 2, ..., XMk),

for the first player, and similarly for the second player. This notation
applies without change in all of the games belonging to r.
Note that a stationary strategy is not in general a mixture of pure

stationary strategies (all x4 zero or one), since the probabilities in a behavior
strategy must be uncorrelated.

Existence of a Solution.-Given a matrix game B, let val[B] denote
its minimax value to the first player, and X[B], Y[B] the sets of optimal
mixed strategies for the first and second players, respectively.2 If B and
C are two matrices of the same size, then it is easily shown that

|val [B -val [C] < max bij- q | * (2)
i,i

Returning to the stochastic game F, define At(a) to be the matrix of ele-
ments

a1j + El PA. c

= 1, 2, ..., mk; j = 1, 2, ..., nk, where a is any N-vector with numerical
components. Pick a (o) arbitrarily, and define a(t) by the recursion:

a(g) = val[Ak(t (t- 1))], t = 1, 2.

(If we had chosen a(o) to be the value of At, for each k, then at(k) would
be the value of the truncated game r( ) which starts at position k, and
which is cut off after t steps if it lasts that long.) We shall show that the
limit of a (t) as t -o o exists and is independent of a (o), and that its com-
ponents are the values of the infinite games rF.

Consider the transformation T:

T7Ia = ,B, where p3k = val[Ak(a)].

Define the norm of a to be

JII'll = max IcJkl.
k
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Then we have

||lT ,B- Ta|| = maxl val[Ak) -val[Ak(c)]|k
max | iphj31 - EPPhall (3)
k, i, j.

. max |Ipki max -all

= (1 -s)3 ""I-
using (2). In particular, ||T2 -Tot || < (1 - s)|T - |. Hence the

sequence a(o), Ta (o), Ta (o) ... is convergent. The limit vector 4 has
the property 4 = To. But there is only one such vector, for iT= 1

implies

T=11T- T41 < (1-s)l| - Tll,
by (3), whence || - || = 0. Hence 4 is the unique fixed point of T and
is independent of a(o).
To show that Ok is the value of the game r k, we observe that by following

an optimal strategy of the finite game r(I) for the first t steps and playing
arbitrarily thereafter, the first player can assure himself an amount within
= (1 - s)M/s of the value of r( ); likewise for the other player. Since
e: 0 and the value of r(*) converges to q6k, we conclude that q6k is indeed

the value of rk. Summing up:
THEOREM 1. The value of the stochastic game r is the unique solution

4 of the system

4k = val [Ak()], k = 1, 2, ..., N.

Our next objective is to prove the existence of optimal strategies.

THEOREM 2. The stationary strategies x*, y*, where xl e X [A (4)],
y Y[A'(4)], I = 1, 2, ..., N, are optimal for the first and second players
respectively in every game rk belonging to r.

Proof: Let a finite version of rIk be defined by agreeing that on the
tth step the play shall stop, with the first player receiving the amount

ah; + >3Ph* 41 instead of just ahj. Clearly, the stationary strategy x *
assures the first player the amount 4k in this finite version. In the original
game rk, if the first player uses x *, his expected winnings after t steps
will be at least

-_ (1 -s) -1max
h,i,
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and hence at least

p-k(1-s)' max&.

His total expected winnings are therefore at least

k- (1 - s)max9 - (1 - s)tM/s.
I

Since this is true for arbitrarily large values of t, it follows that x is optimal
in rF for the first player. Similarly, y is optimal for the second player.

Reduction to a Finite-Dimensional Game.-The non-linearity of the
"val" operator often makes it difficult to obtain exact solutions by means
of Theorems 1 and 2. It therefore becomes desirable to express the payoff
directly in terms of stationary strategies. Let r = {1"} denote the
collection of games whose pure strategies are the stationary strategies of
F. Their payoff functions (x, y) must satisfy

G(X, y.) = XkAkyk + El XkpklykOl(I -Y

for k = 1, 2, ..., N. This system has a unique solution; indeed, for the

linear transformation 7777:

T 7aXI' = (, where (k = xkAkyk + 1xkPklykai

we have at once
jT7Tv( - 777v all = max Ixkpklyk((3 - al)JI (1 - s)ll( - all,

k

corresponding to (3) above. Hence, by Cramer's rule,

xlPllyl - 1 xlPl2yi -x'A'y ... XlplNyI
x2P21y2 x2P22y2-1

xNPNIyN ... * * xNA NyN ... XNPNNyN1
t*( y ) = -._

xlpllyl - 1 xlPl2yl ... xlplkyl ... xlplNyl
x2P21y2 X2P22y2 - 1 ...

xkpkkyk

xNPN1yN ... xNpNkyN ... xNPNNyN-1

THEOREM 3. The games rIk possess saddle points:

min max .k(x, y) = max min t(x, y), (4)

y x x y
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for k = 1, 2, ..., N. Any stationary strategy which is optimal for all
re r is an optimal pure strategy for all; rk e r, and conversely. The value
vectors of r and1r are the same.
The proof is a simple argument based on Theorem 2. It should be

pointed out that a strategy x may be optimal for one game rk (or r k) and
not optimal for other games belonging to r (or r). This is due to the
possibility that r might be "disconnected"; however if none of the pkj
are zero this possibility does not arise.

It can be shown that the sets of optimal stationary strategies for r are
closed, convex polyhedra. A stochastic game with rational coefficients
does not necessarily have a rational value. Thus, unlike the minimax
theorem for bilinear forms, the equation (4) is not valid in an arbitrary
ordered field.
Examples and Applications.-1. When N - 1, r may be described

as a simple matrix game A which is to be replayed according to proba-
bilities that depend on the players' choices. The payoff function of r is

xAy
N(X, y) =

xAy

where S is the matrix of (non-zero) stop probabilities. The minimax
theorem (4) for rational forms of this sort was established by von Neu-
mann;3 an elementary proof was subsequently given by Loomis.4

2. By setting all the stop probabilities st, equal to s > 0, we obtain a
model of an indefinitely continuing game in which future payments are
discounted by a factor (1 -s)'. In this interpretation the actual transi-
tion probabilities are qkl pkjl./(l - s). By holding the qfi fixed and
varying s, we can study the influence of interest rate on the optimal
strategies.

3'. A stochastic game does not have perfect information, but is rather
a "simultaneous game," in the sense of Kuhn and Thompson.' However,
perfect information can be simulated within our framework by putting
either mk or nk equal to 1, for all values of k. Such a stochastic game of
perfect information will of course have a solution in stationary pure
strategies.

4. If we set nk = 1 for all k, effectively eliminating the second player,
the result is a "dynamic programming" model.5 Its solution is given by

any set of integers i = {il,i1, ..., NJ 1i < .ik < M} which maximizes the
expression
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p11 -1 pl2 1-aiplN
Pi2~~~~~~~~~~~~~sP221 P22-

..P. ... N._ Nl . aN * PN-
k(i)=

pil - pl2 .. plk lN

P21 p22

*--i sk - .1 .. .V
N INk PNN

For example (taking N = 1), let there be alternative procedures i 1,
. n costing ci = -ai to apply and having probability si of success.

The above then gives us the rule: adopt that procedure i* which maximizes
the ratio ai*/si*, or equivalently, the ratio si*/ct*.

5. Generalizations of the foregoing theory to infinite sets of alternatives,
or to an infinite number of states, readily suggest themselves (see for
example ref. 6). We shall discuss them in another place.

* The preparation of this paper was sponsored (in part) by the Office of Naval Re-
search.
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1. Introduction.-By generalized local class field theory1 we mean
the theory of abelian extensions of a field k which is complete under a
non-Archimedean rank one valuation and has a residue class field k which
satisfies the two axioms: (1) k has no inseparable extensions, and (2) for
each positive integer n, the algebraic closure of k contains exactly one
subfield of degree n over k. Two of the three main theorems-namely
the existence and limitation theorems-have been proved in an entirely
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